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ABSTRACT

Evaluation of a real function f on an interval X using interval arithmetic
yields an interval extension F(X) containing the range R(f;X) of £ on X.
Unfortunately, F(X) is sometimes excessively wider than R(f;X). Evaluation of
fect by interval differentiation arithmetic gives F(X) and the extension F'(X)
of f' on X. If F'(X) > 0 (or F'(X) < 0), then £ is monotone on X = [a,b], and
R(f;X) = [f(a),£f(b)] (or R(f;X) = [f(b),f(a)]), giving improved bounds for
R(f;X). If 0 e int(F'(X)), then X is divided into subintervals on which f is
either guaranteed to be monotone or has possible extremal points.
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A Pascal-SC program for this simple algorithm is given, and numerical
results are presented. As a byproduct of the computation, possible extremal
points of f are isolated.
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SIGNIFICANCE AND EXPLANATION

Interval computation provides ways to obtain inclusions for the range of a
function on an interval automatically, taking into account the effects of o,
roundoff error in actual computer evaluation of the function. However, simply N
"plugging in an interval" for the independent variable and using interval 24
arithmetic to evaluate the function often leads to inclusions of the range of a .
function which are too large by orders of magnitude, and useless for practical .. 71
purposes. Because of this failure of naive application of interval methods, a \3?? -
::'
.

number of efficient methods for calculating an inclusion of the range of a

function have been developed, most of which are based on the use of a mean-value
or centered form for the interval extension of a function. The algorithm ;
presented in this paper takes a different approach, based on the fact that the NN
range of a monotone function on an interval can be computed by evaluating the

-~
4
L

function at the endpoints of the interval (with directed rounding to insure SO}
inclusion). Interval differentiation arithmetic is used to evaluate an interval oy :'
inclusion F'(X) of the range of the derivative of the function on the interval Foes

X. Even though this inclusion may be crude, the function is guaranteed to be F; y 1
monotone on X if 0 is not contained in the interior of F'(X), and hence its g§§g£§2
range can be calculated accurately. If 0 is in the interior of F'(X), then X is p
subdivided into subintervals, on which the function is either monotone or ,\;i;I;
possibly has an extremal point. By taking the interval hull of the ranges of o
the function on all subintervals, an improved inclusion of the range of the ﬁ\i}ixi
function is obtained. As a byproduct of the computation, possible extremal it{xiiﬂ
points of the function are isolated in the subintervals on which 0 is in the i:;:::h

interior of the interval extension of the derivative of the function. 1f there
are no such intervals, then the function is piecewise monotone, and an accurate
inclusion of its range is obtained by the algorithm.

A Pascal-SC program is given which implements the algorithm, and numerical
results are presented. The text of this report was presented as an invited
address at the International Interval Symposium 1985, held at the University of
Freiburg, Germany, on September 23-26, 1985.
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Improved Interval Bounds for Ranges of Functions

L. B. Rall

1. Ranges of functions. The range of a real function f:D CR + Ron a set XC D is

R(£:X) = {£(x) | x ¢ X}, (1.1

In case X = {a,b] is a closed, bounded interval and £ is continuous, thenp R(£;X) will also
be an interval of the same kind. Closed, bounded intervals will be referred to simply as
intervals, and the set of such intervals will be denoted by IR.

A fundamental problem of interval analysis is the calculation of R(f;X) or at least a
good approximation to it. If f is defined in terms of arithmetic operations and functions

with known interval extensions, then straightforward use of interval computation gives an

interval extension F of f such that

R(f;X) C F(X) (1.2)
for X C D. This calculation has the advantage of being completely automatic, and does not
require knowledge of special properties of f. Unfortunately, F(X) can be such a gross
overestimation of R(f;X) in certain cases that it is useless for practical purposes.

Furthermore, the quality of F(X) as an approximation to R(f;X) is generally unknown.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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A number of methods have been developed for obtaining better approximations to R(f;X),
starting with the work of Moore [1]. The recent book by Ratschek and Rokne [5] descrices a
number of these techniques, and gives a substantial bibliography. Most of the apprc iches
to this problem are based on transformation of F, usually into centered or mean-valv orms
[1}, [5}. The method given in this paper applied to continuocusly differentiable tions
f, and makes use of information about the monotonicity of f obtained by the p. 3 of
automatic differentiation ([2].

2. Monotone functions. If the function f is nondecreasing on X, then R(f ) is

simply

R(f;X) = [f(a), £f(Db)]. (2.1)

Similarly, if f is nonincreasing on X, then
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(X

R(f;X) = (f(b), f(a)]). (2.2)

Thus, the range of monotone functions can be determined by calculating only two function
values. In actual practice, of course, downward rounding of the lower endpoint and upward
rounding of the upper endpoint gives an interval inclusion of R(f;X) which is slightly
wider than the exact range. For the time being, it will be assumed that function values
are computed exactly.

A sufficient condition for (2.1) to hold for differentiable f is that

f'(x) >0, a<<x <b, (2.3)

and similarly (2.2) holds if f'(x) < 0 on X. Furthermore, suppose that f is continuously

differentiable, and F' denotes an interval extension of f£' obtained by interval
computation. If F'(X) » 0 (F'(X) < 0), it follows that f is nondecreasing (nonincreasing)

on X, and R(f;X) can be calculated directly by (2.1) or (2.2), respectively.

-2~
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The additional information about the derivative of f needed above can also be obtained

automatically. The values of F(X) and F'(X) can be computed by using interval

differentiation arithmetic, as described below. All that is required is a formula or
subroutine for f£; no symbolic differentiation is necessary. If necessary, a bisection

procedure can be applied to the interval X to find subintervals on which £ can be

A A

guaranteed to be monotone. The resulting algorithm provides either the exact value of

:-: R(f:X), or else an inclusion of R{f;X) which is better in general than F(X).
3. Real differentiation arithmetic. It is convenient to define interval
l differentiation arithmetic as an extension of real differentiation arithmetic. This

arithmetic can be used to calculate the values of functions and their derivatives
automatically, without symbolics or numerical approximations [(4). Like interval
a arithmetic, real differentiation arithmetic is an ordered-pair arithmetic, with elements U

= {u,u'), V= (v,v'), <. € Rz. The rules for thisg arithmetic are:

U +V=(uu') + (v,v') = (u+ v, u'+v'), (3.1)
U-V=(uu')=(v,v') = (u-=v, u =v'), (3.2) R
UeV = (u,u')e(v,v') = (uev, uev' + veu'), (3.3)

U/N = (u,u')/(v,v') = (u/v, (u' = (u/v)sv')/v), v # 0. (3.4)

The arithmetic defined in this way forms a division ring with identity, and will be denoted

-

by D. If the first element of each operand pair is interpreted as a function value, and

the second as a derivative value, then the first element of the result corresponds to the ~::__ -:

LAY
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evaluation of the operation, and the second to the evaluation of its derivative, according Sorat ™

to the well-known rules of calculus. If real numbers c are identified with the pairs P
-~ {c,0), then it follows from the chain rule of calculus that .

£0Ix, 1)) = (£(x), £'(x)), (3.5) e
)

oy

-\. . ..

that is, the rules of differentiation arithmetic will automatically give both the value and [.:-'.__

1':.~':’~"I-‘
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the value of the derivative of a rational function f. More generally, the chain rule gives

£((u,u’)) = (£(u), u'ef'(n)), (3.6)

which allows the definition of standard functions in D, for example,

U o gflueu') (¥

e e, u'.e), (3.7)

In U = In(u,u') = (ln u, u'/u), (3.8)

and so on. The combination of arithmetic operations and standard functions will be called
a computational system for differentiation arithmetic. It is simple to program such a
computational system, particulary in a language such as Pascal-SC, which permits definition
of operators and functions for various data types [(3].

4. Interval differentiation arithmetic. Interval differentiation arithmetic is

defined by the same rules as real differentiation arithmetic, starting with pairs of
intervals instead of real numbers, and using interval arithmetic instead of real arithmetic
inside the parentheses on the right sides of (3.1)-(3.3). With interval extensions of
standard functions, the definitions (3.7), (3.8) and so on are used to construct a
computational system for interval differentiation arithmetic. Once again, such a system is
easy to program in Pascal-SC, which supports interval arithmetic as well as operator and
function definitions for various data types [3].

The analog to (3.5) in interval differentiation arithmetic is

F((X,[1,1))) = (F(X), F'(X)). 4.1)

Thus, by a direct evaluation process in this arithmetic, interval inclusions F(X) of R(f;X)
and F'(X) of R(f';X) can both be obtained automatically. Here, even if F'(X) is a crude
approximation to the range of f' on X, the conditions F'(X) » 0 or F'(X) < 0 are sufficient

to guarantee the monntonicity of £, and if f is monotone, then its range can be calculated

-4~
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exactly by (2.1) or (2.2). This observation is the basis of the algorithm described in the

next section.

5. An algorithm for range calculation. Of course, if the calculation of F'(X) shows

that £ is monotone on the entire interval X, then R(f:X) can be calculated at once.
Otherwise, X will be partitioned into subinterval, and either R(f;X) or an approximation to
it will be constructed. Let a given list of n subintervals of X be denoted by Ln - {x,.
xz,..., xn}' and suppose that R C R(f;X) is known. On each subinterval xi’ either r(xi) C
R, in which case R(t;xi) makes no additional contribution to R(f;X), or £ is monotone, in
which case its range can be computed directly and R updated, or else 0 is an interior poirnt
of F'(xi), in which case xi may contain a critical point of f. 1In the latter case, X; can
be bisected and the resulting subintervals put on a new list for further examination. 1In
order for the algorithm to terminate in a finite number of steps, a lower bound § is put on
the widths of the subintervals to be conaidered, and an upper bound N is placed on the
number of subintervals to be saved for further examination. For convenience, if Y,Z are
intervals, then Y ++ Z will denote the interval hull of Y and Z, that is, the smallest
interval which contains both Y and Z.
The algorithm consists of the following steps:
e, (Initialization) Take X, = X, L, 1= {x,), R := (f(x),f(x)], where x is some
point in X.
2°. (Iteration) For { = 1,...,n, compute (F(X;), F'(X,))
(a) If F(xi) C R, then discard Xi.
(b) If F'(Xy) >0 or F'(X;) < 0, then compute R := R ++ R(f.xi) and discard X
(c) Otherwise, retain X
3°. (Termination or continuation) Denote the list of retained intervals by L.

(a) 1If Lr is empty, then the algorithm terminates with the exact value

R = R({f;X) (5.1)

of the range of f on X.
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(b) If r >N or w(X,) < g, then the algorithm terminates with the overestimate

R := R ++ F(X’) +H .. F(Xr) D R(£;X) (5.2)

of the range of f on X.
(c) Otherwise, each subinterval in Lr is bisected to form a new list Ln with n =
2r, and the algorithm returns to step 2°.
6. Remarks. The algorithm given in the previous section will terminate in a finite

nurber of steps with either the exact value of R(f;X) or an overestimate which is never

worse than

R = F(X1) ++ .. ++ F(Xn) D R(£;X). (6.1)

In general, (6.1) is a better approximation to R(f;X) than F(X) because of the convergence
of united extensions to the range of a continuous function [1].

As a byproduct of the calculation when an overestimate is produced, the intervals
x1,...,xr which are retained at the final step may contain critical points of £, that is,
points at which f'(x) = 0. This information may be useful in optimization problems.
Furthermore, if the 1list of retained intervals is nonempty, then the value R D R(f;X)
returned by the algorithm is definitely known to be an overestimate, while if the list of
retained algorithms is empty, then this value is exact (modulo outward rounding). Thus,
the algorithm itself indicates the type of result (exact or an overestimate) it obtains.
The knowledge that R is an overestimate and the list of retained intervals can be used to
refine the calculation of R(f;X) further, if desired. Some idea of the quality of the
overestimate can be obtained by comparing the value of R before calculatirg (5.2) with the
final result.

7. Numerical results. Numerical results were computed for the following functions,

using the Pascal-SC program given in the following section.
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£i(x) = x - x, (7.1)

fz(x) = XeX, (7.2)

(x = 1)efx + 3)

(x + 2) ’ 7.3)

f3(X) =
f4(x) = x/X. (7.4)

a. For X = [a,b], the naive interval extension r‘(x) =X ~X of f1 gives F1([a,b]) =
fa - b, b ~ al], while the algorithm gives R = (0,0] = R(f1tx) for arbitrary X.

bs For symmetric intervals X = [-s,s), the algorithm gives the exact value R = [O,szl
= R(f,; (-s,8]), while F,([-s,8]) = [-s,s]¢(-8,8] = (-82,8%]. In case X = [-r,s) is
nonsymmetric interval containing 0, the result of the algorithm can be of the form R =
[~€, max{rz,sz}, where € > 0 is small, with a message that a small interval containing 0

can contain a critical point of fz. For example, for X = [-7,8), one has
F,y(X) = XeX = [-56, 64) (7.5)

while the algorithm gives

R = (-3.1x10" 18

, 64] (7.6)
with a notation that there may be a critical point of fz in the retained interval
[-1.63x10‘9, 1.87x10'9]. In all other cases, the algorithm gives the exact result. Even
if X is nonsymmetric about 0, the algorithm will give the correct result if 0 is a
bisection point.

S. The function f, is actually monotone increasing, but has a pole at
x = =-2. The algorithm will sense the monotonicity of 53 and give correct results if X is

subdivided a sufficient number of times. The results are much better than the naive

-7-




B s nls- e oiar o s ainh i auiie Sl sl el SP\IL AL BPL B¢
LA ARV T i P A

interval extension Fa(x) = (X - 1)e(X + 3)/(X + 2) when one of the endpoints of X is close

to -2. For example, for X = [-1.9, 98],

F3(X) = [-2929, 97970), (7.7)
while the algorithm gives
R = [~-31.9, 97.97]. (7.8)
For X = [-1.999999, 98],
8 9
Fa(x) = [-3.03x107, 9,797x107), (7.9)
..
while the algorithm gives
R = [-~3000002, 97.97). (7.10)
I Finally, for X = [-1.99999999999, 98], which has a lower endpoint as close to -2 as

possible in 12-digit decimal arithmetic, one gets

: Fy(X) = (-3.03x10"3, 9.797x10"4), (7.11)
while the algorithm gives

_. R = [-300000000002, 97.97) (7.12)

d. The algorithm does not give good results for f,;(x) = x/x, because it determines

that every subinterval of X possibly contains a critical point of f, (which in fact is

» true, since f4(x) 2 1 is constant, and £4'(x) 2 0). Thus, the algorithm computes R = 1,1} ‘:
initially, and the final value is determined only by the united extension (6.1). of :-' “ N
.':' TS
A A
-8- "n »%a b\
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course, the result is generally better than the naive interval extension F4(X) = X/X

evaluated on the entire interval X, but is still usually a gross overestimate. For

example, for X = [0.002, 2].

FqalX) = [0.001, 1000) (7.13)

while the algorithm gives

R = {0.203, 4.903), (7.14)

which is still not a very good approximation to [1,1), even though it is much better than

(7.13). Of course, the user is warned that the result may not be good by the fact that all
subintervals are retained. Other methods usually give no warning when gross overestimates
are produced. One way to improve the algorithm in this case, since interval extensions of

derivatives are available, would be to use mean-value forms

F(Xi) = m(xi) + F'(Xi)O(X - mx:)) (7.15)

to obtain interval extensions F of f on subintervals X;, instead of obtaining them by

straightforward evaluation.

8. A Pascal-SC program. The program written below was designed to be general, so

that the user needs to supply only subroutines for evaluation of the function f in ordinary
interval arithmetic (IFEVAL) and in interval differentiation arithmetic (IDFEVAL). The
source code for these subroutines should be located in the files FEVAL.FUN. Examples of
these subroutines for the functions discussed in §7 are given in §10. 'f?,f;"

The operators for interval differentiation arithmetic given in §9 include only the

basic arithmetic operators for type IDERIV. For a complete computational system, operators

ree et t

for mixed arithmetic between types INTEGER, REAL, and IDERIV should be included, as well as

S

standard functions [3].
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The number of subintervals allowed in a list is set by the constant DIM in the
program, which can be changed by the user. The size of the smallest subintervals is

similarly controlled by the number LIMIT of bisections allowed. Thus, if LIMIT = L, then

§ = 27Leww(x), (8.1)

where w(X) = b ~ a is the width of the original interval X = [a,b]. The source code for

the Pascal-SC program follows:

PROGRAM IRANGE (INPUT,OUTPUT);
CONST DIM = 256; (* Maximum number of subintervals *)
LIMIT = 32; (* Maximum number of bisections *)
TYPE INTERVAL = RECORD INF,SUP : REAL END ;
IDERIV = RECORD X,PRIME: INTERVAL END;
DIMTYPE = 1..DIM;
STACKTYPE = RECORD INT:INTERVAL;FUN:IDERIV END;
VAR X,RF,BEST,WORST: INTERVAL;
F: IDERIV;
I,NA,NB,LIM: INTEGER;
A,B: ARRAY [DIMTYPEJOF STACKTYPE; (* A is the list of intervals to
be examined, B is the list of

retained intervals *)

MX: REAL;
$INCLUDE INTERVAL.PAK; (* Makes interval arithmetic available *)
$INCLUDE IDERV.PAK; (* Interval differentiation arithmetic *)

PROCEDURE IOUT(X: INTERVAL); (* Prints endpoints in standard format *)
BEGIN

WRITE('({',X.INF,',*,X.SUP,']");

END;
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$INCLUDE FEVAL.FUN; (* Evaluation of the function in interval and
and interval differentiation arithmetic *)
FUNCTION RMF(L,G: REAL): INTERVAL;
(* Bounds the range of a monotone function which assumes its least
value at L and its greatest value at G. *)
VAR D,U: INTERVAL;
BEGIN
:=INTPT(L);U:=INTPT(G);
D:=IFEVAL(D);U:=IFEVAL(U);
D.SUP:=U.SUP;
RMF : =D
END;
FUNCTION MID{(X: INTERVAL): REAL; (¥ Calculates midpoint of an interval *)
VAR A,B: ARRAY(1..2]OF REAL;
BEGIN
A[1]:=X.INF;B(1):=0.5;
A(2):=X.SUP;B[2] :=0.5;
MID:=SCALP(A,B,0)

END;

BEGIN (* Program IRANGE *)
WRITELN( 'Enter initial interval X:'):
IREAD(INPUT,X);
WRITE(' X = ');I0OUT(X);WRITELN;
F:=IDFEVAL(X):
WORST:=F.X;
IF (F.PRIME.INF >= () THEN RF:=RMF(X.INF,X.SUP)
ELSE IF (F.PRIME.SUP <= 0) THEN RF:=RMF(X.SUP,X.INF)

ELSE

-1l
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v

- BEGIN (* F is not monotone *)

NA:=1;LIM:=0; ¢
s A{1] . INT:=X;A[1] .FUN:=F;
I MX:=MID(X); .
Iy X: =INTPT (MX);

BEST:=IFEVAL(X);

)
.

WHILE ((NA > 0) AND (NA <= DIM DIV 2) AND (LIM < LIMIT)) DO

v
l‘ '_'

BEGIN (* WHILE *)

A
P
o

LIM:=LIM+1;NB:=0;

FOR I:=1 TO NA DO

{.

BEGIN (* STACK B *)

o« CF

. MX:=MID(A[I].INT);

NB:=NB+1;

o’:m
:?

c.';-
o« ¢
.,

B([NB] .INT.INF:=A [I].INT.INF;

[

. B{NB] .INT.SUP:=MX;

- B(NB] .FUN: =IDFEVAL (B [NB] . INT) §
NB:=NB+1;
B(NB] . INT. INF:=MX;
B[NB] . INT.SUP:=A [1] . INT.SUP;
B(NB] .FUN:=IDFEVAL(B [NB] . INT);
- END; (* STACK B *)
NA:=0;
" FOR I:=1 TO NB DO
BEGIN (* UNSTACK B *)
IF NOT (B(I].FUN.X <= BEST)
- THEN IF (B[1].FUN.PRIME.INF >= 0)
by THEN BEST:=BEST+*RMF(B(1].INT.INF,B[I].INT.SUP)
. ELSE IF (B[I].FUN.PRIME.SUP <= 0)

THEN BEST:=BEST+*RMF(B{I].INT.SUP,B(I].INT.INF)

-12=
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ELSE
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BEGIN (* RESTACK A *)
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NA:=NA+1;A(NA] :=B[I]
END; (* RESTACK A *)
END; (% UNSTACK B *)

- RF : =BEST;

s Tele
Y

FOR I:;=1 TO NA DO RF:=RF+*A[I].FUN.X;
END; (* WHILE *)

IF NA > O THEN

BEGIN (* NA > 0 *)

.
o

RF :=BEST;

WRITELN( 'Function may have critical points in:‘');
. FOR I:=1 TO NA DO
BEGIN

:: WRITE('A({',I:2,'] = '};IOUT(A[I].INT);WRITELN;
b RE:=RF+*A (1] .FUN.X
END;
END; (* NA > 0 %)
. END; {* F is not monotone *)

WRITELN('Naive interval arithmetic gives:');
: WRITE(' F(X) = ');IOUT(WORST))WRITELN;
. WRITELN('The algorithm gives:');
WRITE(' F(X) = ');IOUT(RF);WRITELN

END. (* Program IRANGE *)

9. The operators for interval differentiation arithmetic. The six basic unary and

- binary arithmetic operators for type IDERIV are located in the file IDERIV.PAK, which also

'

includes the call to the interval library for the function ISCALP to compute the interval

scalar product.

I'd
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TYPE IVECTOR = ARRAY(1..2]OF INTERVAL;
FUNCTION ISCALP ( VAR A,B: IVECTOR; DIM: INTEGER): INTERVAL;

EXTERNAL 88; (* Interval scalar product *)

OPERATOR + (U: IDERIV) RES: IDERIV;
BEGIN

RES:=U

[ .

OPERATOR - (U: IDERIV) RES: IDERIV; o .
NG

BEGIN NEAERS
. -~ b".l

e,

U.X:=~U.X; I, =~

U.PRIME: =-U.PRIME;

b

2 RES : =U

END;

OPERATOR + (U,V: IDERIV) RES: IDERIV;
e BEGIN

" U.X:=U.X+V.X;
U.PRIME: =U. PRIME+V. PRIME;

RES:=U

END:

OPERATOR - (U,V: IDERIV) RES: IDERIV;
BEGIN
U.X:=U.X-V.X;

U.PRIME:=U.PRIME-V.PRIME;

RES:=U

END;
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¥ OPERATOR * (U,V: IDERIV) RES: IDERIV;
2 VAR A,B: IVECTOR;
BEGIN
.‘.E A1) :=U.X;B[1] :=V.PRIMR;
' A{2):=V.X;B[2) :=V.PRIME;
. U.PRIME:=ISCALP(A,B,2);
U.X:=U.X*V.X;
RES:=0U

END;
. OPERATOR / (U,V: IDERIV) RES: IDERIV:
% VAR A,B: IVECTOR;

C: IDERIV;

BEGIN

CoX:=U.X/NV.X;
o A[1]:=INTPT(1);B[1] :=U.PRIME;
- A[2):==C.X;B{2):=V.PRIME;
j: C.PRIME:=ISCALP(A,B,2)/V.X7
= RES:=C
) END;
- 10. Example function subroutines. (Contents of the file FEVAL.FUN.)
:. fa) £,(x) = x - x.

FUNCTION IFEVAL(X: INTERVAL): INTERVAL;

- BEGIN
 -' IFEVAL := X - X
' ,_ END;
';: -15-
.
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.
o
y FUNCTION IDFEVAL(X: IDERIV): IDERIV;
BEGIN ‘
¢
- IDFEVAL := X - X
o END;
(b) fz(x) = XeX.
" FUNCTION IFEVAL(X: INTERVAL): INTERVAL;
[ BEGIN
IFEVAL := X*X
END;
' FUNCTION IDFEVAL(X: IDERIV): IDERIV;
- BEGIN
IDFEVAL := X*X
- END
(c) f3(X) = (x = 1)e(x + 3)/(x + 2).
i %
3 FUNCTION IFEVAL(X: INTERVAL): INTERVAL;
BEGIN
) IFEVAL := (X - 1)*(X + 3)/(X + 2)
END; ]
FUNCTION IDFEVAL(X: IDERIV): IDERIV; (] [
g ".\1
- VAR ONE,TWO,THREE: IDERIV; R '-'.‘.i
R ™ R v:\y
i BEG 5 e
- LN '-:‘d
ONE.X := INTPT(1);ONE.PRIME := INTPT(0); e ATN
TWO.X := INTPT(2);TWO.PRIME := INTPT(0);
THREE.X := INTPT(3);THREE.PRIM := INTPT(0);
| IDFEVAL := (X - ONE)*(X + THREE)/(X + TWO) !
. END; OCR YR e
® q
b e
. -s. PO -h
. RS
(@) €,(x) = x/x. LGOS
4 RN
SN
\. - ~. x—
LA P
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PUNCTICN IFEVAL(X: INTERVAL): INTERVAL;

BEGIN
IFEVAL := X/X

END;

FUNCTION IDFEVAL(X: IDERIV): IDERIV;
BEGIN
IDFEVAL := X/X

END;
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